

A Modern Approach to quantum mechanics 2^a ed. John S. Townsend

Contents

Chapter 1 – Stern-Gerlach Experiments

Chapter 2 – Rotation of Basis States and Matrix Mechanics

Chapter 3 – Angular Momentum

Chapter 4 – Time Evolution

Chapter 5 – A System of Two Spin-1/2 Particles

Chapter 6 – Wave Mechanics in One Dimension

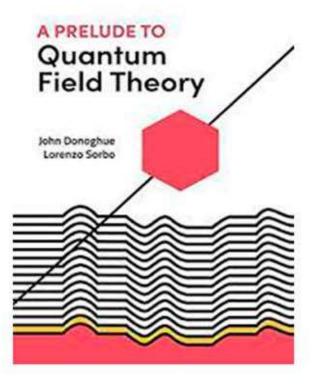
Chapter 7 – The One-Dimensional Harmonic Oscillator

Chapter 8 – Path Integrals

Chapter 9 – Translational and Rotational Symmetry in the

Two-Body Problem

Chapter 10 – Bound States of Central Potentials


Chapter 11 – Time-Independent Perturbations

Chapter 12 – Identical Particles

Chapter 13 – Scattering

Chapter 14 – Photons and Atoms

A Prelude to Quantum Field Theory John Donoghue and Lorenzo Sorbo

Contents

CHAPTER 1 Why Quantum Field Theory?

CHAPTER 2 Quanta

CHAPTER 3 Developing free field theory

CHAPTER 4 Interactions

CHAPTER 5 Feynman rules

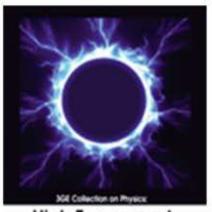
CHAPTER 6 Calculating

CHAPTER 7 Introduction to renormalization

CHAPTER 8 Path Integrals

CHAPTER 9 A short guide to the rest of the story

APPENDIX Calculating loop integrals


A.1 Basic techniques

A.2 Locality

A.3 Unitarity

A.4 Passarino-Veltman reduction

3GE Collection on Physics: High Energy and Short Pulse Lasers

High Energy and **Short Pulse Lasers**

Table of Contents

Chapter 1 Short Laser Pulses

Chapter 2 Ultrashort Laser Pulses

Chapter 3 Brilliance of a Laser-produced Soft X-ray Source

Chapter 4 Large Scale High Power Laser System

Chapter 5 Free Electron Laser

Chapter 6 Short Optical Pulse

Chapter 7 Femtosecond Laser Pulses

Chapter 8 Application of PLD-Fabricated Thick-Film Permanent Magnets

Mass Spectrometry, 2^a ed.

Mass Spectrometry

47

Table of contents

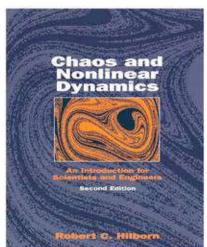
Chapter 1 Introduction of Mass Spectrometry

Chapter 2 Principles of Ionization and Ion Dissociation

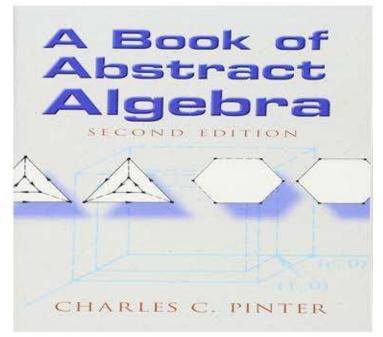
Chapter 3 Isotopes

Chapter 4 Instrumentation Techniques of Infrared Spectroscopy

Chapter 5 Practical Aspects of Electron Ionization


Chapter 6 Chemical Ionization

Chapter 7 Thermal Desorption Chemical Ionization


Chapter 8 Environmental Applications of Pyrolysis

Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers , 2q ed. Robert C. Hilborn

Contents

- I THE PHENOMENOLOGY OF CHAOS
- **1 Three Chaotic Systems**
- 2 The Universality of Chaos
- II TOWARD A THEORY OF NONLINEAR DYNAMICS AND CHAOS
- 3 Dynamics in State Space: One and Two Dimensions
- 4 Three-Dimensional State Space and Chaos
- **5 Iterated Maps**
- **6 Quasi-Periodicity and Chaos**
- 7 Intermittency and Crises
- **8 Hamiltonian Systems**
- **III MEASURES OF CHAOS**
- 9 Quantifying Chaos
- 10 Many Dimensions and Multifractals
- **IV SPECIAL TOPICS**
- 11 Pattern Formation and Spatiotemporal Chaos
- 12 Quantum Chaos, The Theory of Complexity, and Other Topics

Contents

Chapter 1 Why Abstract Algebra?

Chapter 2 Operations

Chapter 3 The Definition of Groups

Chapter 4 Elementary Properties of Groups

Chapter 5 Subgroups

Chapter 6 Functions

Chapter 7 Groups of Permutations

Chapter 8 Permutations of a Finite Set

Chapter 9 Isomorphism

Chapter 10 Order of Group Elements

Chapter 11 Cyclic Groups

Chapter 12 Partitions and Equivalence Relations

Chapter 13 Counting Cosets

Chapter 14 Homomorphisms

Chapter 15 Quotient Groups

Chapter 16 The Fundamental Homomorphism Theorem

Chapter 17 Rings: Definitions and Elementary Properties

Chapter 18 Ideals and Homomorphisms

Chapter 19 Quotient Rings

Chapter 20 Integral Domains

Chapter 21 The Integers

Chapter 22 Factoring into Primes

Chapter 23 Elements of Number Theory (Optional)

Chapter 24 Rings of Polynomials

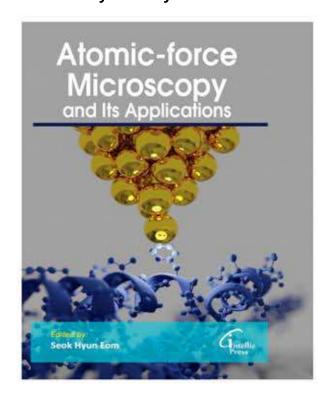
Chapter 25 Factoring Polynomials

Chapter 26 Substitution in Polynomials

Chapter 27 Extensions of Fields

Chapter 28 Vector Spaces

Chapter 29 Degrees of Field Extensions


Chapter 30 Ruler and Compass

Chapter 31 Galois Theory: Preamble

Chapter 32 Galois Theory: The Heart of the Matter

Chapter 33 Solving Equations by Radicals

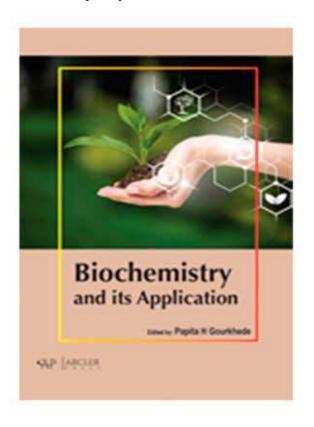
Atomic-force Microscopy and Its Applications Edited by: Seok Hyun Eom

Table of Contents

Chapter 1 The Basics of AFM

Chapter 2 AFM Instrumentation

Chapter 3 Atomic Force Microscopy Models


Chapter 4 Measuring AFM Images

Chapter 5 AFM Image Processing and Analysis

Chapter 6 AFM Image Artifacts

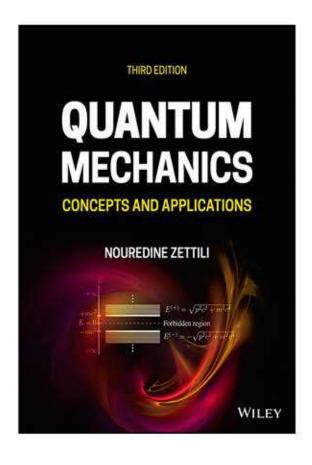
Chapter 7 Applications of AFM

Biochemistry and its Applications Edited by: Papita H Gourkhede

Table of Contents

Chapter 1 Introduction to Biochemistry

Chapter 2 Biosynthesis and Inmunochemical Techniques


Chapter 3 Genetic Information Transfer

Chapter 4 Chromatography and Biochemistry

Chapter 5 Mass Spectrometry and Spectroscopic Techniques

Chapter 6 Principles of Clinical Biochemistry

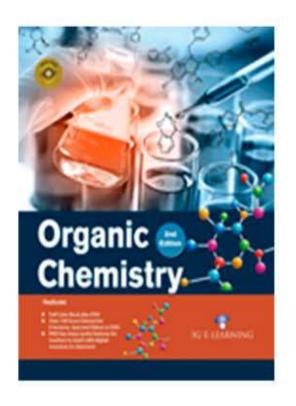
Chapter 7 Spectroscopy Techniques in Biochemistry

Contents

- 1 Origins of Quantum Physics
- 2 Mathematical Tools of Quantum Mechanics
- 3 Postulates of Quantum Mechanics
- 4 One-Dimensional Problems
- **5 Angular Momentum**
- **6 Three-Dimensional Problems**
- 7 Rotations and Addition of Angular Momenta
- **8 Identical Particles**
- 9 Approximation Methods for Stationary States
- 10 Time-Dependent Perturbation Theory
- 11 Scattering Theory
- 12 Relativistic Quantum Mechanics
- 13 Beyond Relativistic Quantum Mechanics

A The Delta Function

B Angular Momentum in Spherical Coordinates


C C++ Code for Solving the Schrödinger Equation

D Index Notation for 4-Vectores

E The Relativistic Notation and Four Vectors

F Lagrangian Formulation of Classical Mechanics

Organic Chemistry, 2^a ed.

Table of Contents

CHAPTER 1 STRUCTURE AND BONDING

CHAPTER 2 INTRODUCTION TO ORGANIC MOLECULES AND

FUNCTIONAL GROUPS

CHAPTER 3 ALKANES, ALKENES AND ALKYNES

CHAPTER 4 STEREOCHEMISTRY

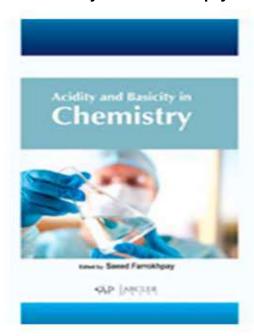
CHAPTER 5 UNDERSTANDING ORGANIC REACTIONS

CHAPTER 6 ALKYL HALIDES, NUCLEOPHILIC SUBSTITUTION AND

ELIMINATION REACTION

CHAPTER 7 ALCOHOLS, ETHERS AND EPOXIDES

CHAPTER 8 AROMATIC COMPOUNDS


CHAPTER 9 ALDEHYDES AND KETONES

CHAPTER 10 CARBOXYLIC ACID AND ACID DERIVATES

CHAPTER 11 AMINES

CHAPTER 12 OXIDATION-REDUCTION REACTIONS

Acidity and Basicity in Chemistry Edited by: Saeed Farrokhpay

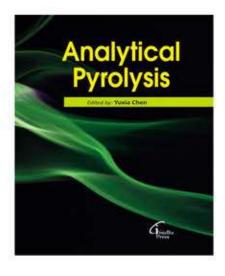
Table of Contents

Chapter 1 Basics of Acid-base Chemistry

Chapter 2 Acid-Base Properties of Surfaces

Chapter 3 Monitoring pH and Alkalinity of Water

Chapter 4 Effect of Basicity and Acidity on Soil Remediation and Plant Nutrition


Chapter 5 Historical Developments in Acid-Base Chemistry of Food Products

Chapter 6 Titratable Acidity and pH in Food Products

Chapter 7 The Application of Acidity and Basicity in Drug Discovery

Chapter 8 The Alkaline Diet and Human Health

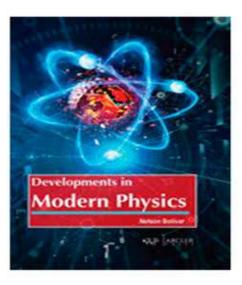
Analytical Pyrolysis Edited by: Yuxia Chen

Table of Contents

Chapter 1 Analytical Pyrolysis: An Overview

Chapter 2 Instrumentation and Analysis

Chapter 3 Pyrolysis Mass Spectrometry: Instrumentation, Techniques, and Applications


Chapter 4 Microstructure of Polyolefins

Chapter 5 Condensation Polymers: Polyesters and polyamides

Chapter 6 The Application of Analytical Pyrolysis to the Study of Cultural Materials

Chapter 7 Environmental Applications of Pyrolysis

Developments in Modern Physics Nelson Bolívar

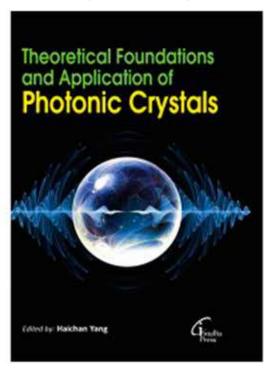
Table of Contents

Chapter 1 Introduction to Modern Physics

Chapter 2 Spacetime and General Relativity

Chapter 3 Quantum Physics

Chapter 4 Elementary Particle Physics


Chapter 5 Nuclear Physics

Chapter 6 Cosmology and Modern Astrophysics

Chapter 7 Physics of Semiconducting Lasers

Chapter 8 Physics of Ferroelectrics

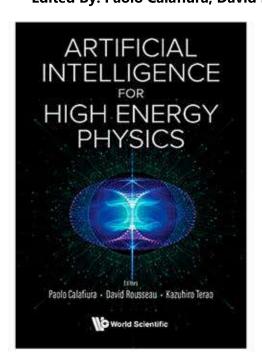
Theoretical Foundations and Application of Photonic Crystals Edited by Haichan Yang

Table of Contents

Chapter 1 Photonic Crystals: An introduction

Chapter 2 ID Photonic Crystals

Chapter 3 Two-dimensional Photonic Crystals


Chapter 4 Three Dimensional Photonic cristal

Chapter 5 Brillouin Zones

Chapter 6 Crystal Defects

Chapter 7 Designing Photonic Crystals for Applications

Artificial Intelligence for High Energy Physics Edited By: Paolo Calafiura, David Rousseau and Kazuhiro Terao

Contents

Chapter 1 Introduction

Part I: Discriminative Models for Signal/Background Boosting

Chapter 2 Boosted Decision Trees

Chapter 3 Deep Learning from Four Vectors

Chapter 4 Anomaly Detection for Physics Analysis and Less Than

Supervised Learning

Part II: Data Quality Monitoring

Chapter 5 Data Quality Monitoring Anomaly Detection

Part III: Generative Models

Chapter 6 Generative Models for Fast Simulation

Chapter 7 Generative Networks for LHC Events

Part IV: Machine Learning Platforms

Chapter 8 Distributed Training and Optimization of Neural Networks

Chapter 9 Machine Learning for Triggering and Data Acquisition

Part V: Detector Data Reconstruction

Chapter 10 End-to-End Analyses Using Image Classification

Chapter 11 Clustering

Chapter 12 Graph Neural Networks for Particle Tracking and Reconstruction

Reconstruction

Part VI: Jet Classification and Particle Identification from Low Level

Chapter 13 Image-Based Jet Analysis

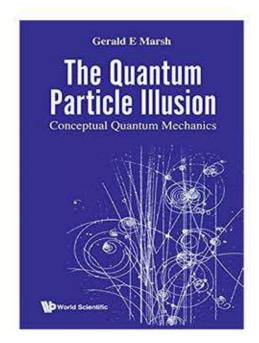
Chapter 14 Particle Identification in Neutrino Detectors

Chapter 15 Sequence-Based Learning

Part VII: Physics Inference

Chapter 16 Simulation-Based Inference Methods for Particle Physics

Chapter 17 Dealing with Nuisance Parameters


Chapter 18 Bayesian Neural Networks

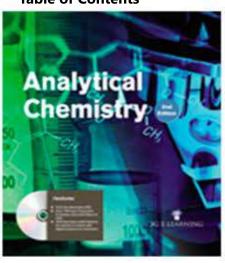
Chapter 19 Parton Distribution Functions

Part VIII: Scientific Competitions and Open Datasets

Chapter 20 Machine Learning Scientific Competitions and Datasets

The Quantum Particle Illusion : Conceptual Quantum Mechanics Gerald E Marsh

Contents


Chapter 1 The Photon: History of a Misrepresentation

Chapter 2 The Concept of a Particle

Chapter 3 Reinterpreting the Wavefunction

Chapter 4 Matter and Its Motion

Analytical Chemistry, 2^a ed. Table of Contents

Table of Contents

CHAPTER 1 INTRODUCTION TO ANALYTICS CHEMISTRY

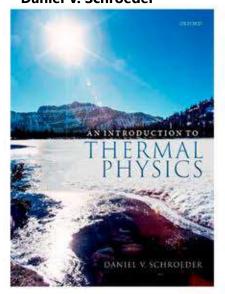
CHAPTER 2 REVIEW OF BASIC CONCEPT OF ANALYTICAL CHEMISTRY

CHAPTER 3 IONIC EQUILIBRIA CALCULATIONS

CHAPTER 4 STEPS IN A TYPICAL QUANTITATIVE ANALYSIS (GRAVIMETRIC AND TITRATION)

CHAPTER 5 OXIDATION-REDUCTION TITRATION AND MULTI-METHOD
ANALYSIS

CHAPTER 6 POTENTIOMETRIC METHODS


CHAPTER 7 INTRODUCTION TO UV-VIS METHOD

CHAPTER 8 UPLC METHOD AND DEVELOPMENT

CHAPTER 9 ION EXCHANGE CHROMATOGRAPHY

CHAPTER 10 KINETIC METHODS OF ANALYSIS

An Introduction to Thermal Physics Daniel V. Schroeder

Contents

Part I: Fundamentals

Chapter 1. Energy in Thermal Physics

Chapter 2. The Second Law

Chapter 3. Interactions and Implications

Part II: Thermodynamics

Chapter 4. Engines and Refrigerators

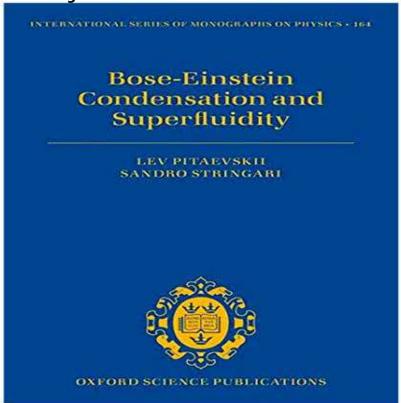
Chapter 5. Free Energy and Chemical Thermodynamics

Part III: Statistical Mechanics

Chapter 6. Boltzmann Statistics

Chapter 7. Quantum Statistics

Chapter 8. Systems of Interacting Particles


Appendix A: Elements of Quantum Mechanics

Appendix B: Mathematical Results

Suggested Reading

Reference Data

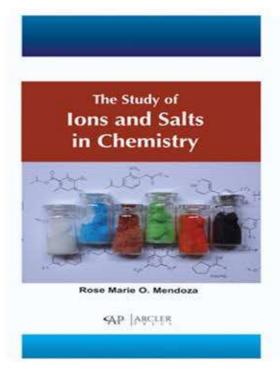
Bose-Einstein Condensation and Superfluid Lev Pitaevskii and Sandro Stringari

Contents

- 1 Introduction
- 2 Long-range Order, Symmetry Breaking, and Order Parameter
- 3 The Ideal Bose Gas
- 4 Weakly Interacting Bose Gas
- 5 Nonuniform Bose Gases at Zero Temperature
- 6 Superfluidity
- 7 Linear Response Function
- 8 Superfluid 4He
- 9 Atomic Gases: Collisions and Trapping

Part II

- 10 The Ideal Bose Gas in the Harmonic Trap
- 11 Ground State of a Trapped Condensate
- 12 Dynamics of a Trapped Condensate
- 13 Thermodynamics of a Trapped Bose Gas
- 14 Superfluidity and Rotation of a Trapped Bose Gas
- 15 Coherence, Interference, and the Josephson Effect


Part III

- 16 Interacting Fermi Gases and the BCS-BEC Crossover
- 17 Fermi Gas in the Harmonic Trap
- **18 Tan Relations and the Contact Parameter**
- 19 Dynamics and Superfluidity of Fermi Gases
- 20 Spin-polarized Fermi Gases

Part IV

- 21 Quantum Mixtures and Spinor Gases
- 22 Quantum Gases in Optical Lattices
- 23 Quantum Gases in Pancake and Two-dimensional Regimes
- 24 Quantum Gases in Cigar and One-dimensional Regimes
- 25 Dipolar Gases

The Study of Ions and Salts in Chemistry Rose Marie O. Mendoza

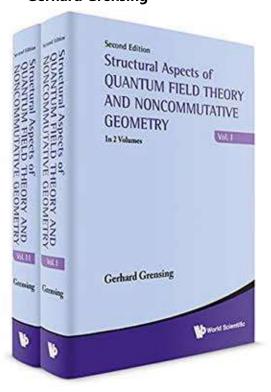
Table of Contents

Chapter 1 Introduction to Ions and Ionic Compounds

Chapter 2 Characteristics of Ions and Ionic Compounds

Chapter 3 Ion Extraction and Ion Mobilities

Chapter 4 Fundamental Concepts of Ionic liquids


Chapter 5 Chemistry of Salts and Aqueous Solutions

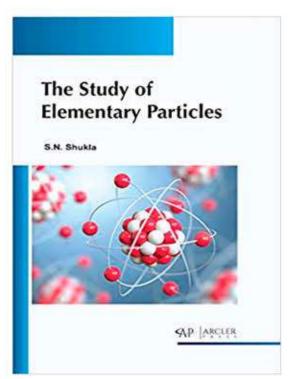
Chapter 6 Role of Salt in Public Health and Food Science

Chapter 7 Use of Different Salt Compounds in Saline Agriculture

Chapter 8 Use of Salts in the Pharmaceutical Industry

Structural Aspects of Quantum Field Theory and Noncommutative Geometry (In 2 Volumes) Gerhard Grensing

Contents


Volume I

I Classical Relativistic Field Theory: Kinematical Aspects
II Classical Relativistic Field Theory: Dynamical Aspects
III Relativistic Quantum Field Theory: Operator Methods
IV Nonrelativistic Quantum Mechanics: Functional Integral Methods
V Relativistic Quantum Field Theory: Functional Integral Methods
VI Quantum Field Theory at Nonzero Temperature

Volume II

VII Symmetries and Canonical Formalism
VIII Gauge Symmetries and Constrained Systems
IX Weyl Quantization
X Anomalies in Quantum Field Theory
XI Noncommutative Geometry
XII Quantum Groups
XIII Noncommutative Geometry and Quantum Groups

The Study of Elementary Particles S.N. Shukla

Table of Contents

Chapter 1 Basic Constituents of Matter

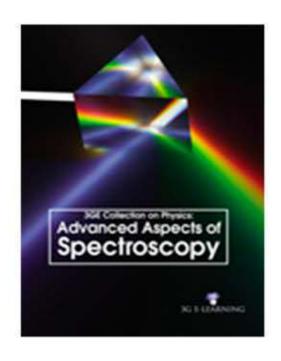
Chapter 2 Classification of Elementary Particles
Chapter 3 Standard Modelo f Particles Physics

Chapter 4 Theories Beyond the Standard Model of Elementary

Particle

Chapter 5 Particle Interaction in Elementary Particles

Chapter 6 Particle Collision in Elementary Particles


Chapter 7 New Discoveries in Particles

Chapter 8 Applications of Elementary Particles

Chapter 9 Conservation Laws and Symmetry of Elementary Particles

Chapter 10 Future of Elementary Particles

3GE Collection on Physics: Advanced Aspects of Spectroscopy

Table of contents

Chapter 1 Introduction to Spectroscopy

Chapter 2 FTIR Spectroscopy

Chapter 3 Laser Induced Breakdown Spectroscopy

Chapter 4 X-Ray Photoelectron Spectroscopy

Chapter 5 Raman Spectroscopy

Chapter 6 Nano Spectroscopy

Chapter 7 Organic Spectroscopy

Chapter 8 NMR Spectroscopy