

Boletín de Adquisiciones Mayo 2023 Parte 2

Contents

- **1** Introduction
- **2** Ordinary Differential Equations
- **3** The Hamiltonian Formalism of Classical Mechanics
- 4 Banach & Hilbert Spaces
- **5** Linear Operators
- 6 The Fourier Transform
- 7 Schwartz Functions & Tempered Distributions
- 8 Green's Functions
- 9 Quantum Mechanics
- **10 Variational Calculus**

Introduction to Biostatistics using R Mohsen Nady

Table of contents

Chapter 1	Introduction to Statistics
Chapter 2	Numerical Data
Chapter3	The Normal Distribution
Chapter 4	Binary and Categorical Dat
Chapter 5	Time to Event Data= Siurvival Data=Failure Time Data
Chapter 6	Sampling Distribution
Chapter 7	Confidence Intervals
Chapter 8	Confidence Intervals for Comparing Two or More Populations
Chapter 9	Hypothesis Testing for Comparing Means
Chapter 10	Hypothesis Testing for Proportions and Time to Event Data
Chapter 11	Hypothesis Testing for More Than Two Populations
Chapter 12	Simple and Multiple Linear Regression
Chapter 13	Simple and Multiple Logistic Regression
Chapter 14	Simple and Multiple Cox Regression

Modern Control Systems , 13 a ed. Richard C. Dorf and Robert H. Bishop

Brief Contents

- Chapter 1 Introduction to Control Systems
- **Chapter 2** Mathematical Models of Systems
- **Chapter 3** State Variable Models
- Chapter 4 Feedback Control System Characteristics
- **Chapter 5** The Performance of Feedback Control Systems
- Chapter 6 The Stability of Linear Feedback Systems
- Chapter 7 The Root Locus Method
- **Chapter 8 Frequency Response Methods**
- **Chapter 9** Stability in the Frequency Domain
- Chapter 10 The Design of Feedback Control Systems
- Chapter 11 The Design of State Variable Feedback Systems
- **Chapter 12 Robust Control Systems**
- **Chapter 13 Digital Control Systems**

Proofs: A Long-Form Mathematics Textbook Jay Cummings

- **1** Intuitive Proofs
- 2 Direct P roofs
- 3 Sets
- **4 Induction**
- 5 Logic
- **6 The Contrapositive**
- 7 Contradiction
- 8 Functions
- 9 Relations

Partial Differential equation , 2^a ed. Lawrence C. Evans

Contents

- Chapter 1. Introduction Part I: Representation Formulas for Solutions Chapter 2. Four important linear partial differential equations Chapter 3. Nonlinear first-order PDE Chapter 4. Other ways to represent solutions Part II: Theory for linear partial differential equations Chapter 5. Sobolev spaces Chapter 6. Second-order elliptic equations Chapter 7. Linear evolution equations Part III: Theory for nonlinear partial differential equations Chapter 8. The calculus of variations Chapter 9. Nonvariational techniques Chapter 10. Hamilton–Jacobi equations Chapter 11. Systems of conservation laws
- Chapter 12. Nonlinear wave equations

Quantum Measurement Theory and Its Applications Kurt Jacobs

Quantum Measurement Theory

and its Applications

Kurt Jacobs

- **1** Quantum measurement theory
- 2 Useful concepts from information theory
- **3** Continuous measurement
- 4 Statistical mechanics, open systems, and measurement
- 5 Quantum feedback control
- 6 Metrology
- 7 Quantum mesoscopic systems I: circuits and measurements
- 8 Quantum mesoscopic systems II: measurement and control

Modern Control Engineering, 5ª ed Katsuhiko Ogata

Contents

- **Chapter 1** Introduction to Control Systems
- Chapter 2 Mathematical Modeling of Control Systems
- Chapter 3 Mathematical Modeling of Mechanical Systems and Electrical Systems
- Chapter 4 Mathematical Modeling of Fluid Systems and Thermal Systems
- Chapter 6 Control Systems Analysis and design by the Root-Locus Method
- Chapter 7 Control Systems Analysis and Design by the Frequency Response Method
- Chapter 8 PID Controllers and Modified PID Controllers
- Chapter 9 Control Systems Analysis in State Space
- **Chapter 10 Control Systems Design of in State Space**

The Jaynes–Cummings Model and Its Descendants: Modern research directions Jonas Larson, Themistoklis Mavrogordatos

Contents

Introduction

- **1** Theoretical aspects
- 2 Cavity QED
- **3 Circuit QED**
- **4 Trapped ions**
- 5 Waveguide QED
- 6 Alternative physical systems
- 7 Extensions to many-body configurations and additional degrees of freedom
- 8 Conclusions a projection for the coming decades

Precision Cosmology: The First Half Million Years Bernard J.T. Jones

Contents

- Part I. 100 Years of Cosmology
- **1. Emerging cosmology**
- 2. The cosmic expansion
- 3. The cosmic microwave background
- 4. Recent cosmology
- Part II. Newtonian Cosmology
- 5. Newtonian cosmology
- 6. Dark energy cosmological models
- 7. The early universe
- 8. The inhomogeneous universe
- 9. The inflationary universe
- Part III. Relativistic Cosmology
- 10. Minkowski space
- 11. The energy momentum tensor
- 12. General relativity
- 13. Space-time geometry and calculus
- 14. The Einstein field equations
- **15. Solutions of the Einstein equations**
- 16. The Robertson–Walker solution
- 17. Congruences, curvature and Raychaudhuri
- 18. Observing and measuring the universe
- Part IV. The Physics of Matter and Radiation
- **19. Physics of the CMB radiation**
- 20. Recombination of the primeval plasma
- 21. CMB polarisation
- 22. CMB anisotropy

Part V. Precision Tools for Precision Cosmology

- 23. Likelihood
- 24. Frequentist hypothesis testing
- 25. Statistical inference: Bayesian
- 26. CMB data processing
- 27. Parametrising the universe
- 28. Precision cosmology
- 29. Epilogue

Problems in Quantum Field Theory: with Fully-Worked Solutions Francois Gelis

Contents

- **1 Quantum Field Theory Basics**
- **2 Functional Methods**
- 3 Non-Abelian Fields
- 4 Scattering Amplitudes
- 5 Lattice, Finite T, Strong Fields

Solving Physics Problems Exploring New Thinking Paradigms By Yipeng Gu

Contents

Introduction: The MLQ-(ST)C Paradigm

- 1. Kinematics
- 2. Dynamics
- 3. Rigid Body
- 4. Vibration
- 5. Two-Body Model
- 6. Fluid

- 1 Quantized electromagnetic field and coherent state representations
- 2 Nonclassicality of radiation fields
- 3 Two-mode squeezed states and quantum entanglement
- 4 Non-Gaussian nonclassical states
- 5 Optical interferometry with single photons and nonclassical light
- 6 Polarization and orbital angularmomentum of quantum fields
- 7 Absorption, emission, and scattering of radiation
- 8 Partial coherence in multimode quantum fields
- 9 Open quantum systems
- **10** Amplification and attenuation of quantum fields
- 11 Quantum coherence, interference, and squeezing in two-level systems
- 12 Cavity quantum electrodynamics
- 13 Absorption, emission, and scattering from two-level atoms
- 14 Quantum interference and entanglement in radiating systems
- **15** Near field radiative effects
- 16 Decoherence and disentanglement in two-level systems
- 17 Coherent control of the optical properties
- 18 Dispersion management and ultraslow light
- 19 Single photons and nonclassical light in integrated structures
- 20 Quantum optical effects in nano-mechanical systems

Quantum Mechanics: The Theoretical Minimum Leonard Susskind and Art Friedman

Contents

- **1** Systems and Experiments
- 2 Quantum States
- **3** Principles of Quantum Mechanics
- 4 Time and Change
- **5** Uncertainty and Time Dependence
- 6 Combining Systems: Entanglement
- 7 More on Entanglement
- 8 Particles and Waves
- 9 Particle Dynamics
- **10 The Harmonic Oscillator**

Quantum Mechanics and Path Integrals: Emended Edition Richard P. Feynman and Albert R. Hibbs

EMENDED EDITION

Contents

- Chapter 1 The Fundamental Concepts of Quantum mechanics
- Chapter 2 The Quantum-mechanical Law of Motion
- Chapter 3 Developing the Concepts with Special Examples
- Chapter 4 The Schrödinger Description of Quantum Mechanics
- **Chapter 5** Measurements and Operators
- **Chapter 6** The Perturbation Method in Quantum Mechanics
- **Chapter 7** Transition Elements
- **Chapter 8 Harmonic Oscillators**
- Chapter 9 Quantum Electrodynamics
- **Chapter 10 Statistical Mechanics**
- Chapter 11 The Variational Method
- **Chapter 12 Other Problems in Probability**

Richard P. Feynman Albert R. Hibbs Emended by Daniel F. Styer

Uuantum

and Pat

Mechanics

Quantum Optics Marlan O. Scully and M. Suhail Zubairy

MARLAN O. SCULLY AND M. SUBAIL ZUBAIRY

- **1** Quantum theory of radiation
- 2 Coherent and squeezed states of the radiation field
- 3 Quantum distribution theory and partially coherent radiation
- 4 Field–field and photon–photon interferometry
- 5 Atom-field interaction semiclassical theory
- 6 Atom-field interaction quantum theory
- 7 Lasing without inversion and other effects of atomic coherence and interference
- 8 Quantum theory of damping density operator and wave function approach
- 9 Quantum theory of damping Heisenberg–Langevin approach
- **10** Resonance fluorescence
- 11 Quantum theory of the laser density operator approach
- 12 Quantum theory of the laser Heisenberg–Langevin approach
- **13** Theory of the micromaser
- 14 Correlated emission laser: concept, theory, and analysis
- 17 Atom optics
- 18 The EPR paradox, hidden variables, and Bell's theorem
- **19 Quantum nondemolition measurements**
- 20 Quantum optical tests of complementarity
- 21 Two-photon interferometry, the quantum measurement problem, and more