

Boletín de Adquisiciones Octubre 2022 Parte 2

Advanced Topics in Quantum Field Theory A Lecture Course Mikhail Shifman

Contents

Introduction

Part I Before Supersymmetry

- **1** Phases of Gauge Theories
- 2 Kinks and DomainWalls
- 3 Vortices and Flux Tubes (Strings)
- 4 Monopoles and Skyrmions
- 5 Instantons
- 6 Isotropic (Anti)ferromagnet: O(3) Sigma Model and Extensions, Including CP(N – 1)
- 7 False-Vacuum Decay and Related Topics
- 8 Chiral and Other Anomalies
- 9 Confinement in 4D Gauge Theories and Models in Lower Dimensions

Part II Introduction to Supersymmetry

- **10** Basics of Supersymmetry with Emphasis on Gauge Theories
- **11 Supersymmetric Solitons**
- Part III Solutions to Exercises

Astrophysics: Decoding the Cosmos 2nd Edition Judith Ann Irwin

Contents

Introduction

Part I: The Nonelectromagnetic Signal **Chapter 1: The Particles: Macroscopic to Subatomic Chapter 2: Gravitational Radiation: A New Window** Part II: The EM Signal Observed **Chapter 3: Defining the Signal Chapter 4: Measuring the Signal** Part III: Matter and Radiation Essentials **Chapter 5: Matter Essentials Chapter 6: Radiation Essentials Part IV: The EM Signal Perturbed Chapter 7: The Interaction of Light with Matter Chapter 8: The Signal Transferred Chapter 9: The Interaction of Light with Space Part V: The EM Signal Emitted Chapter 10: Continuum Emission Chapter 11: Line Emission** Part VI: The Signal Decoded **Chapter 12: Forensic Astronomy**

Table of contents

- **Chapter 1 Fundamentals of Quantum Physics**
- **Chapter 2 Origin of Quantum Theory**
- **Chapter 3 Duality of Waves and Particles**
- Chapter 4 Quantum Mechanics and discontinuous Motion of Particles
- **Chapter 5 Quantum Mechanical Tunneling**
- **Chapter 6 Interpretations of Quantum Mechanics**
- Chapter 7 Classification of Interpretations for Quantum Mechanics
- **Chapter 8 Transactional Interpretation of Quantum Physics**

Essential Astrophysics : Interstellar Medium to Stellar Remnants Shantanu Basu and Pranav Sharma

Contents

Chapter 1 Introduction Chapter 2 The Interstellar Medium Chapter 3 Star Formation Chapter 4 Stars Chapter 5 Stellar Evolution Chapter 6 Stellar and Planetary Systems Chapter 7 Stellar Remnants

Vibrations and Waves Edited by Theodros Varzakas

Table of contents

Chapter 1 Simple Harmonic Motion Chapter 2 The Damped Harmonic Oscillator Chapter 3 Forced Oscillations Chapter 4 Coupled Oscillators Chapter 5 Travelling Waves Chapter 6 Interference and Diffraction of Waves Chapter 7 The Dispersion of Waves

String theory Graham Town, ed.

Table of contents

Chapter 1 The Classical Bosonic String Chapter 2 The Quantized Bosonic String Chapter 3 Conformal Field Theory Chapter 4 String Compactifications Chapter 5 String Perturbation Theory and One-Loop Amplitudes Chapter 6 The classical Fermionic String Chapter 7 Superstrings

Introduction to Stellar Dynamics Luca Ciotti

Contents

- Part I Potential Theory
- 1 The Gravitational Field
- 2 The Gravitational Potential
- 3 Tidal Fields
- 4 The Two-Body Problem
- **5** Quasi-Circular Orbits
- Part II Systems of Particles
- 6 The N-Body Problem and the Virial Theorem
- 7 Relaxation 1: Two-Body Relaxation
- 8 Relaxation 2: Dynamical Friction
- Part III Collisionless Systems
- 9 The Collisionless Boltzmann Equation and the Jeans Theorem
- 10 The Jeans Equations and the Tensor Virial Theorem
- **11 Projected Dynamics**
- 12 Modeling Techniques 1: Phase-Space Approach
- **13 Modeling Techniques 2: Moments Approach**
- **14 Modeling Techniques 3: From** ρ **to** *f*
- **Appendix Mathematical Background**

Cosmochemistry Harry Y. McSween, Jr, and Gary R. Huss

Contents

- **1** Introduction to cosmochemistry
- 2 Nuclides and elements: the building blocks of matter
- **3** Origin of the elements
- 4 Solar system and cosmic abundances: elements and isotopes
- 5 Presolar grains: a record of stellar nucleosynthesis and processes in interstellar space
- 6 Meteorites: a record of nebular and planetary processes
- 7 Cosmochemical and geochemical fractionations
- 8 Radioisotopes as chronometers
- 9 Chronology of the solar system from radioactive isotopes
- 10 The most volatile elements and compounds: organic matter, noble gases, and ices
- **11** Chemistry of anhydrous planetesimals
- 12 Chemistry of comets and other ice-bearing planetesimals
- 13 Geochemical exploration of planets: Moon and Mars as case studies
- 14 Cosmochemical models for the formation of the solar system

Interfacial Chemistry of Rocks and Soils Noémi M. Nagy, and József Kónya

Contents

Preface to the First Edition Preface to the Second Edition Authors

Chapter 1 Components of Soil- and Rock-Solution Systems Chapter 2 Interfacial Processes in Geological Systems:

Studies on Montmorillonite Model Substance

Chapter 3 Interfacial Reactions at Rock and Soil Interfaces Chapter 4 Experimental Methods in Studying Interfacial Processes of Rocks and Soils

Fundamentals of Crystallography, Powder X-ray Diffraction, and Transmission Electron Microscopy for Materials Scientists Dong ZhiLi

Contents

Part I: Introduction to Crystallography Chapter 1 Periodicity of Crystals and Bravais Lattices Chapter 2 Symmetry of Crystals, Point Groups and Space Groups Chapter 3 Reciprocal Lattice Chapter 4 Examples for Crystal Structure Representation Part II X-ray Diffraction of Materials Chapter 5 Geometry of X-ray Diffraction Chapter 6 Intensity of Diffracted X-ray Beams Chapter 7 Experimental Methods and Powder X-ray Diffractometer Chapter 8 Rietveld Refinement of Powder X-ray Diffraction Patterns Part III Transmission Electron Microscopy of Materials Chapter 9 Atomic Scattering Factors for Electrons and X-rays Chapter 10 Electron Diffraction in Transmission Electron Microscope Chapter 11. Diffraction Contrast Chapter 12. Phase Contrast

Physics of Data Science and Machine Learning Bljaz A. Rauf

Contents

- **Chapter 1: Introduction**
- **Chapter 2: An Overview of Classical Mechanics**
- **Chapter 3: An Overview of Quantum Mechanics**
- **Chapter 4: Probabilistic Physics**
- Chapter 5: Design of Experiments and Analyses
- **Chapter 6: Basics of Machine Learning**
- Chapter 7: Prediction, Optimization, and New Knowledge Development

The Adventure of the Large Hadron Collider : From the Big Bang to the Higgs Boson Daniel Denegri, Claude Guyot, Andreas Hoecker and Lydia Roos

The Adventure of the LARGE HADRON COLLIDER From the Big Bang to the Higgs Boson

Contents

Introduction

- 1. The Standard Model of Elementary Particle Physics
- 2. Key Experiments Establishing the Standard Model
- 3. What the Standard Model Cannot Explain
- 4. How Could New Physics Look Like?
- 5. Back to the Big Bang
- 6. The LHC
- 7. What is a Particle Detector?
- 8. The ATLAS and CMS Experiments
- 9. LHC Start-Up and Data Taking
- 10. Data Analysis
- 11. The Higgs Boson: Search and Discovery
- 12. Testing the Standard Model
- **13. The Quest for New Physics**
- 14. LHCb and ALICE: The Physics of Flavour and of Hot & Dense Matter
- 15. Looking Ahead
- 16. Conclusions

Quantum Field Theory Edited by Gaetano Scholz

Table of contents

- Chapter 1 Introduction to Quantum Field Theory
- Chapter 2 Perturbation Theory
- **Chapter 3 Quantum Electrodynamics**
- **Chapter 4 Spontaneous Symmetry Breaking**
- **Chapter 5 Functional Quantization**
- **Chapter 6 Path Integrals for Fermions and Photons**
- **Chapter 7 Lattice field theory**

Physiological Control Systems: Analysis, Simulation, and Estimation 2nd Edition Michael C. K. Khoo

Contents

- 1 Introduction
- 2 Mathematical Modeling
- 3 Static Analysis of Physiological Systems
- 4 Time-Domain Analysis of Linear Control Systems
- **5** Frequency-Domain Analysis of Linear Control Systems
- 6 Stability Analysis: Linear Approaches
- 7 Digital Simulation of Continuous-Time Systems
- 8 Model Identification and Parameter Estimation
- 9 Estimation and Control of Time-Varying Systems
- **10 Nonlinear Analysis of Physiological Control Systems**
- **11 Complex Dynamics in Physiological Control Systems**

Introduction to High Energy Physics : Particle Physics for the Beginner Lee G Pondrom

Contents

Chapter 1. Introduction

- **Chapter 2. Special Relativity**
- **Chapter 3. A Little Field Theory**
- **Chapter 4. Quantum Electrodynamics**
- **Chapter 5. Electrodynamics with Protons and Neutrons**
- Chapter 6. Weak Interactions
- **Chapter 7. Electroweak Phenomenology**
- **Chapter 8. Electroweak Theory**
- Chapter 9. Heavy Quark Bound States, Mixing, and CP Violatio

Quantum Mechanics for Beginners: Fundamental Theories of Quantum Mechanics and Hidden Secrets of the Universe Made Easy Alexander Schlotterbeck

Table of Content

INTRODUCTION THE FATHER OF QUANTUM THEORY THE BOHR ATOMIC MODEL THE SCHRÖDINGER EQUATION **EINSTEIN'S RELATIVITY** THE EQUIVALENCE PRINCIPLE THE PROBLEM OF INERTIAL FORCES **RELATIVITY OF GRAVITY** THE DOUBLE-SLIT EXPERIMENT A GAME OF CHANCE **BLACK BODY EMISSION QUANTUM REALITY** MATHEMATICS THE LANGUAGE OF PHYSICS **EXAMPLES OF WHERE APPLIED MATHEMATICS RELATES** TO THE WORLD WHAT ARE YOUR QUANTUM THOUGHTS **QUANTUM MIND TACTIS QUANTUM DIMENSION** CONCLUSION

Contents

- 1. Introduction
- 2. The Harmonic Oscillator: A Treatment by Fock Operators
- 3. Time-Dependent Perturbation Expansions
- 4. Spinless Particles
- 5. Charge and Spin
- 6. The Perfect Molecular Gas
- 7. Real Gases and Phase Transitions
- 8. Photons
- 9. Light-Molecule Interaction
- 10. Conclusions, Acknowledgements, and References

Cavitation and Associated Phenomena By Dmitry A. Biryukov, Denis N. Gerasimov, Eugeny I. Yurin

Cavitation and Associated Phenomena

Dmitry A. Biryukov Denis N. Gerasimov Eugeny I. Yurin

Contents

- 1. Morphology of Cavitation
- 2. Cavitation in Engineering
- 3. Pressure: Positive and Negative
- 4. Hydrodynamics of Cavitation
- 5. Hydraulic Shocks 6. Acoustic Cavitation
- 7. Dynamics of a Cavitating Bubble
- 8. Electrization of Liquids
- 9. Cavitation and Light Emission

Classical and Quantum Statistical Physics : Fundamentals and Advanced Topics Carlo Heissenberg and Augusto Sagnotti

Contents

Part I

- **1** Elements of Thermodynamics
- 2 The Classical Ensembles
- **3 Aspects of Quantum Mechanics**
- **4** Systems of Quantum Oscillators
- **5** Vacuum Fluctuations
- 6 The van derWaals Theory
- 7 The Grand Canonical Ensemble
- 8 Quantum Statistics
- 9 Magnetism in Matter, I
- 10 Magnetism in Matter, II
- 11 The 2D Ising Model
- **12 The Heisenberg Spin Chain**
- 13 Conformal Invariance and the Renormalization Group
- 14 The Approach of Equilibrium