





Astrochemistry: The Physical Chemistry of the Universe, 2nd Edition Andrew M. Shaw



### **Contents**

- 1 The Molecular Universe
- 2 Starlight, Galaxies, and Clusters
- 3 Atomic and Molecular Astronomy
- 4 Stellar Chemistry
- 5 The Interstellar Medium
- **6 Meteorite and Comet Chemistry**
- 7 Planetary Chemistry
- **8 Prebiotic Chemistry**
- 9 Primitive Life Forms
- 10 Mars and Titan Habitats for Life?

Astrophysical Magnetic Fields: From Galaxies to the Early Universe Anvar Shukurov and Kandaswamy Subramanian



- 1 Introduction
- 2 Elements of Magnetohydrodynamics
- 3 Observational Signatures of Magnetic Fields
- 4 Polarization and Depolarization
- 5 The Concept of Hydromagnetic Dynamo
- 6 The Fluctuation Dynamo
- 7 The Mean-Field Dynamo
- 8 The Fluctuation and Mean-Field Dynamos Unified
- 9 Seed Magnetic Fields
- 10 Interstellar and Intergalactic Medium
- 11 Kinematic Dynamos in Galaxies
- 12 Non-linear Mean-Field Galactic Dynamos
- 13 Theory and Observations Put Together
- 14 Magnetohydrodynamics of Galaxy Clusters
- 15 Magnetic Fields in the Early Universe
- 16 Signatures of Primordial Magnetic Fields

What if?: serious scientific answers to absurd hypothetical questions Munroe, Randall



Questions

**Global windstorm** 

**Relativistic baseball** 

Spent fuel pool

Weird (and worrying) questions from the What if? inbox, #1

**New York-style time machine** 

**Soul mates** 

**Laser pointer** 

**Periodical wall of the elements** 

**Everybody jump** 

A mole of moles

Hair dryer

Weird (and worrying) questions from the What if? inbox, #2

The last human light

Machine-gun jetpack

Rising steadily

Weird (and worrying) questions from the What if? inbox, #3

**Orbital submarine** 

**Short-answer section** 

Lightning

Weird (and worrying) questions from the What if? inbox, #4

**Human computer** 

**Little planet** 

Steak drop

**Hockey puck** 

**Common cold** 

**Glass half empty** 

Weird (and worrying) questions from the What if? inbox, #5

Alien astronomers

No more DNA

**Interplanetary Cessna** 

Weird (and worrying) questions from the What if? inbox, #6

Yoda

**Flyover states** 

Falling with helium

**Everybody out** 

Weird (and worrying) questions from the What if? inbox, #7

**Self-fertilization** 

**High throw** 

**Lethal neutrinos** 

Weird (and worrying) questions from the What if? inbox, #8

**Speed bump** 

**Lost immortals** 

**Orbital speed** 

FedEx bandwidth

Free fall

Weird (and worrying) questions from the What if? inbox, #9

Sparta

**Drain the oceans** 

**Drain the oceans: part II** 

**Twitter** 

Lego bridge

**Longest sunset** 

Random sneeze call

Weird (and worrying) questions from the What if? inbox, #10

**Expanding Earth** 

**Weightless arrow** 

**Sunless Earth** 

**Updating a printed Wikipedia** 

Facebook of the dead

**Sunset on the British Empire** 

Stirring tea

All the lightning

**Loneliest human** 

Weird (and worrying) questions from the What if? inbox, #11

Raindrop

**SAT** guessing

**Neutron bullet** 

Weird (and worrying) questions from the What if? inbox, #12

Richter 15.

**Orbitals: With Applications in Atomic Spectra** 

**Charles S McCaw** 



## **Contents**

**Chapter 1. Fundamentals** 

**Chapter 2 Orbitals in the Hydrogen Atom** 

**Chapter 3 Multi-Electron Atoms** 

**Chapter 4 Wavefunctions in Multi-Electron Atoms** 

**Chapter 5 Orbitals in Molecules** 

**Chapter 6 Atomic Spectroscopy** 





## **Table of contents**

**Chapter 1 Introduction to optics** 

**Chapter 2 Waves** 

**Chapter 3 Wave sound** 

**Chapter 4 Interference** 

**Chapter 5 Polarization** 

**Chapter 6 Diffraction** 

**Chapter 7 Reflection and refraction** 

**Chapter 8 Spherical surfaces** 

# Multivariable Calculus Rolland Trapp



- 1. Introduction to three dimensions
- 2. Introduction to vectors
- 3. Differentiation
- 4. Integration
- 5. Vector Analysis

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics Edited by Peter Skoda and Fathalrahman Adam



## **Contents**

# **PART I DATA**

- 1 Methodologies for Knowledge Discovery Processes in Context of AstroGeoInformatics
- 2 Historical Background of Big Data in Astro and Geo Context

## **PART II INFORMATION**

- 3 AstroGeoInformatics: From Data Acquisition to Further Application
- 4 Synergy in Astronomy and Geosciences
- 5 Surveys, Catalogues, Databases, and Archives of Astronomical Data
- 6 Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing
- 7 High-Performance Techniques for Big Data Processing
- 8 Query Processing and Access Methods for Big Astro and Geo Databases
- 9 Real-Time Stream Processing in Astronomy

### **PART III KNOWLEDGE**

- **10 Time Series**
- 11 Advanced Time Series Analysis of Generally Irregularly Spaced Signals: Beyond the Oversimplified Methods
- 12 Learning in Big Data: Introduction to Machine Learning
- 13 Deep Learning an Opportunity and a Challenge for Geo- and Astrophysics
- 14 Astro- and Geoinformatics Visually Guided Classification of Time Series Data
- 15 When Evolutionary Computing Meets Astro- and Geoinformatics

## **PART IV WISDOM**

- 16 Multiwavelength Extragalactic Surveys: Examples of Data Mining
- 17 Applications of Big Data in Astronomy and Geosciences: Algorithms for Photographic Images Processing and Error Elimination
- 18 Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software
- 19 Big Data for the Magnetic Field Variations in Solar-Terrestrial Physics and Their Wavelet Analysis
- 20 International Database of Neutron Monitor Measurements: Development and Applications
- 21 Monitoring the Earth Ionosphere by Listening to GPS Satellites
- 22 Exploitation of Big Real-Time GNSS Databases for Weather Prediction
- 23 Application of Databases Collected in Ionospheric Observations by VLF/LF Radio Signals
- 24 Influence on Life Applications of a Federated Astro-Geo Database

The Invisible Universe : Dark Matter, Dark Energy, and the Origin and End of the Universe Antonino Del Popolo



## **Contents**

**Chapter 1 A Brief History Of The Big Bang Theory** 

**Chapter 2** The Primordial Universe

**Chapter 3 How Do We Know That Dark Matter Exists?** 

**Chapter 4** The Harmony Of The World

**Chapter 5 What Is Dark Matter?** 

Chapter 6 The Golden Age Of Particle Physics: The

**Standard Model** 

**Chapter 7 Dark Matter Candidates** 

**Chapter 8 Detection Of Dark Matter** 

**Chapter 9 Dark Energy** 

**Chapter 10 End Of The Universe** 

Probing Particle Physics with Neutrino Telescopes Edited By: Carlos Pérez de los Heros



- **1 Introduction: Particle Physics with Cosmic Accelerators**
- 2 Neutrino Telescopes
- 3 The Atmospheric Neutrino Flux
- 4 Probing High-Energy Interactions of Atmospheric and Astrophysical Neutrinos
- **5 Standard Neutrino Oscillations**
- 6 Sterile Neutrinos, Non-Standard Neutrino Oscillations and Tests of Lorentz Invariance
- 7 Tests of Dark Matter Scenarios with Neutrino Telescopes
- **8 TeV Gravity Searches**
- 9 Probing Large Extra Dimensions with Neutrino Telescopes
- 10 Signatures of Supersymmetry in Neutrino Telescopes
- 11 Searches for Magnetic Monopoles and Other Stable Massive Particles
- 12 Primordial Black-Hole Signatures in Neutrino Telescopes

**Principles of Continuum Mechanics : Conservation and Balance Laws with Applications** 

**2nd Edition** 

J. N. Reddy



### **Contents**

- 1. Introduction
- 2. Vectors and tensors
- 3. Kinematics of a continuum
- 4. Stress vector and stress tensor
- 5. Conservation of mass and balance of momenta and energy
- 6. Constitute equations
- 7. Applications in heat transfer, fluid mechanics, and solid mechanics

Heat Transfer: Evolution, Design and Performance Adrian Bejan



- 1 Introduction
- **2 Unidirectional Steady Conduction**
- **3 Multidirectional Steady Conduction**
- 4 Time-Dependent Conduction
- 5 External Forced Convection
- **6 Internal Forced Convection**
- 7 Natural Convection
- 8 Convection with Change of Phase
- 9 Heat Exchangers
- 10 Radiation

# The Ideas of Particle Physics 4th Edition

James E. Dodd and Ben Gripaios



### **Contents**

## **Part I Introduction**

- 1. Matter and light
- 2. Special relativity
- 3. Quantum mechanics
- 4. Relativistic quantum theory

# **Part II. Basic Particle Physics:**

- 5. The fundamental forces
- 6. Symmetry in the microworld
- 7. Mesons
- 8. Strange particles

# **Part III. Strong Interaction Physics:**

- 9. Resonance particles
- 10. SU(3) and guarks

# **Part IV. Weak Interaction Physics I:**

- 11. The violation of parity
- 12. Fermi's theory of the weak interactions
- 13. Two neutrinos
- 14. Neutral kaons and CP violation

# Part V. Weak Interaction Physics II:

- 15. The current-current theory of the weak interactions
- 16. An example leptonic process: electron-neutrino scattering
- 17. The weak interactions of hadrons
- 18. The W boson

# Part VI. Gauge Theory of the Weak Interactions:

- 19. Motivation for the theory
- 20. Gauge theory
- 21. Spontaneous symmetry breaking
- 22. The Glashow-Weinberg-Salam model
- 23. Consequences of the model
- 24. The hunt for the W±. Z0 bosons

# Part VII. Deep Inelastic Scattering:

- 25. Deep inelastic processes
- 26. Electron-nucleon scattering
- 27. The deep inelastic microscope
- 28. Neutrino-nucleon scattering
- 29. The quark model of the structure functions

# Part VIII. Quantum Chromodynamics – The Theory of Quarks:

- 30. Coloured quarks
- 31. Colour gauge theory
- 32. Asymptotic freedom
- 33. Quark confinement

# **Part IX. Electron-Positron Collisions:**

- 34. Probing the vacuum
- 35. Quarks and charm
- 36. Another generation

## **Part X. The Standard Model:**

- 37. The model in summary
- 38. Precision tests of the model
- 39. Flavour Mixing and CP violation
- 40. The Large Hadron Collider
- 41. Discovery and properties of the Higgs boson

# Part XI. Beyond the Standard Model:

- 42. Reasons to go beyond
- 43. Neutrino masses and mixing
- 44. Grand unification
- 45. Supersymmetry
- 46. Composite Higgs models
- 47. Axions and the Strong CP problem

# Part XII. Particle Physics and Cosmology:

- 48. The big bang and inflation
- 49. The cosmic microwave background
- 50. The matter-anti-matter asymmetry
- 51. Dark matter
- 52. Dark energy

## Part XIII. Gravity and Gravitational Waves:

- 53. From general relativity to gravitational waves
- 54. The discovery of gravitational waves
- 55. Gravitational wave and multi-messenger astronomy
- 56. The future: Super Ligo and LISA

# **Part XIV. String Theory:**

- 57. Origins the hadronic string
- 58. String theory to M-theory
- 59. The AdS-CFT correspondence
- 60. Consequences of the theory

# Part XV. The Future - To Boldly Go!:

- 61. Accelerators, observatories and other experiments
- 62. Known unknowns
- 63. Glittering prizes
- 64. Unknown unknowns: it must be beautiful

Stars and Space with MATLAB Apps : With Companion Media Pack Dan Green



## **Contents**

**Chapter 1 Getting Started with Matlab** 

**Chapter 2 Apps for Stars** 

**Chapter 3 Stellar Evolution** 

**Chapter 4 Apps for Solar Exploration** 

**Chapter 5 Apps for Star Treks** 

**Chapter 6 Additional Miscellaneous Topics** 

# Fundamentals of astrophysics Stan Owocki



### **Contents**

# **Part I Stellar Properties**

- 1 Introduction
- 2 Astronomical Distances
- **3 Stellar Luminosity**
- 4 Surface Temperature from a Star's Color
- **5 Stellar Radius from Luminosity and Temperature**
- 6 Composition and Ionization from Stellar Spectra
- 8 Stellar Ages and Lifetimes
- 9 Stellar Space Velocities
- 10 Using Binary Systems to Determine Masses and Radii
- 11 Stellar Rotation
- 12 Light Intensity and Absorption
- 13 Observational Methods
- 14 Our Sun

# **Part II Stellar Structure and Evolution**

- 15 Hydrostatic Balance between Pressure and Gravity
- 16 Transport of Radiation from Interior to Surface
- 17 Structure of Radiative versus Convective Stellar Envelopes
- 18 Hydrogen Fusion and the Mass Range of Stars
- 19 Post-Main-Sequence Evolution: Low-Mass Stars
- 20 Post-Main-Sequence Evolution: High-Mass Stars

Part III - Interstellar Medium and Formation of Stars and Planets

- 21 The Interstellar Medium
- 22 Star Formation
- 23 Origin of Planetary Systems
- 24 Water Planet Earth
- 25 Extra-Solar Planets

Part IV Our Milky Way and Other Galaxies

- 26 Our Milky Way Galaxy
- 27 External Galaxies
- 28 Active Galactic Nuclei and Quasars
- 29 Large-Scale Structure and Galaxy Formation and Evolution

Part V Cosmology

- 30 Newtonian Dynamical Model of Universe Expansion
- 31 Accelerating Universe with a Cosmological Constant
- 32 The Hot Big Bang
- 33 Eras in the Evolution of the Universe

# Introductory Analysis: An Inquiry Approach John D. Ross, and Kendall C. Richards



## **Contents**

- **P1 Exploring Mathematical Statements**
- **P2 Proving Mathematical Statements**
- **P3 Preliminary Content**

**Main Content** 

- 1 Properties of R
- **2 Accumulation Points and Closed Sets**
- **3 Open Sets and Open Covers**
- **4 Sequences and Convergence**
- **5 Subsequences and Cauchy Sequences**
- **6 Functions, Limits, and Continuity**
- 7 Connected Sets and the Intermediate Value Theorem
- **8 Compact Sets**
- **9 Uniform Continuity**
- 10 Introduction to the Derivative
- 11 The Extreme and Mean Value Theorems
- 12 The Definite Integral: Part I
- 13 The Definite Integral: Part II
- 14 The Fundamental Theorem(s) of Calculus
- 15 Series

**Extended Explorations** 

- **E1 Function Approximation**
- **E2 Power Series**
- **E3 Sequences and Series of Functions**
- **E4 Metric Spaces**
- **E5 Iterated Functions and Fixed Point Theorems**

# The Shadow of the Black Hole ContentsJohn W. Moffat



## **Contents**

Acknowledgments Prologue: LIGO

- **Chapter 1. Gravitation and Black Holes**
- **Chapter 2. Thermodynamics, Quantum Physics, and Black Holes**
- **Chapter 3. Stars and Black Holes**
- **Chapter 4. Early Observations of Black Holes**
- **Chapter 5. Wormholes, Time Travel, and Other Exotic Theories**
- **Chapter 6. Origins of Gravitational Waves and Detectors**
- Chapter 7. The Biggest Ears in the Sky: LIGO
- **Chapter 8. LIGO/ Virgo Listens to Neutron Stars**
- **Chapter 9. Alternative Gravitational Theories**
- **Chapter 10. The Biggest Eyes in the Sky: The EHT**

Diagnostics of Laboratory and Astrophysical Plasmas
Using Spectral Lineshapes of One-, Two-, and Three-Electron Systems
Eugene Oks



### Contents

**Part I. Non-Turbulent Plasmas** 

**Free Access** 

**Chapter 1. Electron Density** 

**Chapter 2. Temperatures** 

**Chapter 3. Magnetic Field** 

**Chapter 4. Effective Charge of Ions** 

**Part II. Plasmas Containing Oscillatory Electric Fields** 

**Chapter 5. Low-frequency Electrostatic Turbulence** 

Chapter 6 Principles of Spectroscopic Diagnostics of Plasmas
Containing Quasimonochromatic Electric Fields (QEF)

**Chapter 7 Langmuir Waves** 

Chapter 8 Transverse Microwave-, Laser-, and/or Laser-induced Fields

Thin Film Physics and Devices : Fundamental Mechanism, Materials and Applications for Thin Films Jianguo Zhu and Xiaohong Zhu



## **Contents**

**Chapter 1. Foundation of Vacuum Technology** 

**Chapter 2. Physical Preparation Technology of Thin Films** 

**Chapter 3. The Chemical Synthesis Technology of Thin Films** 

**Chapter 4. Related Technologies of Film Preparation** 

**Chapter 5. Formation and Growth of Thin Films** 

**Chapter 6. Structure and Defects of Thin Films** 

**Chapter 7. Physical Properties of Thin Films** 

**Chapter 8. Some Kinds of Important Functional Film Materials** 

**Chapter 9. The Application of Thin Films** 

Handbook of Modern Coating Technologies: Fabrication Methods and Functional Properties Editors: Mahmood Aliofkhazraei, Ali Nasar, Mircea Chipara, Nadhira Bensaada Laidani, Jeff Th.M. De Hosson



- 1. Nanocoatings by sol-gel processes for functionalisation of polymer surfaces and textiles
- 2. Mechanical fabrication methods of nanostructured surfaces such surface mechanical attrition treatment (SMAT)
- 3. Polymer nanofabrication and its plasma processing
- 4. Chemical vapor deposition of nanostructured materials at atmospheric pressure
- 5. Langmuir-Blodgett Methodology: a Versatile Technique to Build Nanoparticle Films
- 6. Flame pyrolysis a cost-effective approach for depositing thin functional coatings...
- 7. Confined-Plume Chemical Deposition
- 8. Electrophoretic Deposition: an effective technique to obtain functionalized nanocoatings
- 9. In vitro and in vivo particle coating for oral targeting and drug delivery
- 10. Use of electrospun coatings to improve the performance of multilayer biopolymeric film
- 11. Corrosion protection by nanostructured coatings
- 12. Tribological Behaviour of Electroless Ni-B Coatin
- 13. Effect of Peening on Tribological and Mechanical Behavior of Bio-Implant Materials
- 14. Improving the efficiency of the cutting tool made of ceramic when machining hardened steel
- 15. Incorporation of Elastomeric Secondary Phase into Epoxy Matrix influences Mechanical properties of Epoxy coatings
- 16. Enhancement of biocompatibility by coatings
- 17. Bionic Colloidal Crystal Coatings



- 1 Composition, Chemistry, and Regulatory Framework
- 2 What is Water Pollution?
- **3 Groundwater and its Treatment**
- 4 Statistics of Measurements
- 5 The Flow of Water and Wastewater
- 6 Troubleshooting and Emergency Planning
- 7 Chemistry and Analyses
- 8 Basic Water and Wastewater Treatment Techniques
- 9 Biological Wastewater Treatment
- **10 Anaerobic Treatment**
- 11 Precipitation and Sedimentation
- 12 Granular Filtration Theory and Practice
- **13 Skin Filtration**
- 14 Membrane Filters and Reverse Osmosis
- 15 Disinfection
- 16 Phosphorus and Nitrogen Removal
- 17 Carbon Adsorption
- 18 Ion Exchange
- 19 Dissolved Air Flotation and Techniques
- 20 Coagulation, Flocculation and Chemical Treatment
- 21 Heat Transfer Processes: Boilers, Heat Exchangers and Cooling Towers
- 22 Evaluating an Existing Wastewater Treatment Plant Design using Modeling Software

How to: absurd scientific advice for common real-world problems Randall Munroe



# How to blow out birthday candles

How to walk a dog

19. How to send a file

20. How to charge your phone

21. How to take a selfie

22. How to catch a drone

23. How to tell if you're a Nineties Kid

24. How to win an election

25. How to decorate a tree

How to build a highway

26. How to get somewhere fast

27. How to be on time

28. How to dispose of this book

How to change a lightbulb.

## **Contents**

## Introduction

- 1. How to jump really high
- 2. How to throw a pool party
- 3. How to dig a hole
- 4. How to play the piano

## How to listen to music

- 5. How to make an emergency landing
- 6. How to cross a river
- 7. How to move
- 8. How to keep your house from moving

# How to chase a tornado

- 9. How to build a lava moat
- 10. How to throw things
- 11. How to play football
- 12. How to predict the weather

# How to go places

- 13. How to play tag
- 14. How to ski
- 15. How to mail a package
- 16. How to power your house (on Earth)
- 17. How to power your house (on Mars)
- 18. How to make friends

# **Introducing Photonics Brian Culshaw**



## Contents

- 1 Photonics An Introduction
- 2 The Nature of Light
- 3 Light Interacting with Materials
- **4 Light Interacting with Structures**
- **5 Photonic Tools**
- 6 The Future

Compact star physics Jürgen Schaffner-Bielich



- 1 Introduction
- **2 General Relativity**
- 3 Dense Matter
- **4 Compact Stars**
- **5 White Dwarfs**
- 6 Pulsars
- **7 Neutron Stars**
- 8 Quark Stars
- 9 Hybrid Stars
- **10 Gravitational Waves**

Beyond Global Warming: How Numerical Models Revealed the Secrets of Climate Change Syukuro Manabe and Anthony J. Broccoli



### Contents

**Chapter 1** Introduction **Chapter 2** Early Studies

Chapter 3 One- Dimensional Model
Chapter 4 General Circulation Models
Chapter 5 Early Numerical Experiments

**Chapter 6 Climate Sensitivity** 

**Chapter 7 Glacial- Interglacial Contrast** 

Chapter 8 The Role of the Ocean in Climate Change Chapter 9 Cold Climate and Deep Water Formation Chapter 10 Global Change in Water Availability

Ceres : An Ice-Rich World in the Inner Solar System Jian-Yang Li and Julie C Castillo-Rogez



## Contents

**Chapter 1 Discovery of Ceres and the Asteroid Belt** 

Chapter 2 Pre-Dawn Exploration
Chapter 3 Dawn Mission Overview
Chapter 4 Surface Composition

Chapter 5 Geology Chapter 6 Water Ice

Chapter 7 Interior Structure
Chapter 8 Recent Activity

**Chapter 9 Astrobiological Significance** 

**Chapter 10 Open Questions and Future Exploration**