

Boletín de Adquisiciones Septiembre 2023 Parte 2

A Modern Primer in Particle and Nuclear Physics Francesco Terranova

Applications of Polyurethanes in Medical Devices Ajay D. Padsalgikar

Contents

- 1. Setting the scene
- 2. Scattering and decay
- 3. Measurements in particle physics
- 4. Accelerators and colliders
- 5. Symmetries and antimatter
- 6. Electromagnetic interactions
- 7. The modern theory of strong interactions
- 8. Flavor symmetries and the quark models
- 9. From QCD to nuclear physics
- **10. Weak interactions**
- 11. Radioactivity and cosmic engines
- **12. The electroweak theory**
- 13. At the forefront of the Standard Model

A Special relativity

B The Principles of quantum mechanics

Contents

Preface

- 1. An Introduction to Polyurethanes and Medical Devices
- 2. Chemistry of Polyurethane Materials
- 3. Structure and Properties of Polyurethanes
- 4. Biological Properties of Polyurethanes
- 5. Rheology and Processing of Polyurethanes
- 6. Medical Applications of Polyurethanes
- 7. Emerging Developments in Polyurethane Technology
- 8. Safety, Health and Environmental Issues in Polyurethanes

Asymptotic Multiple Scale Method in Time Domain Multi-Degree-of-Freedom Stationary and Nonstationary Dynamics Jan Awrejcewicz, Roman Starosta, and Grażyna Sypniewska-Kamińska

Contents

Chapter 1 Introduction Chapter 2 Spring Pendulum Chapter 3 Kinematically Excited Spring Pendulum Chapter 4 Spring Pendulum Revisited Chapter 5 Physical Spring Pendulum Chapter 6 Nonlinear Torsional Micromechanical Gyroscope Chapter 7 Torsional Oscillations of Two-Disks Rotating System Chapter 8 Oscillator with Springs-in-Series

Chapter 9 Periodic Vibrations of Nano/Micro Plates

Case Studies in Star Formation : A Molecular Astronomy Perspective Duncan MacKay, Mark Thompson and James Urquhart

Contents

Part I Introduction **1** An Overview of Star Formation Part II Low-Mass Star Formation (LMSF) 2 Two LMSFR Surveys Using IRAM and ALMA 3 IRAS 16293 in Ophiuchus 4 NGC 1333 in Perseus 5 IRAS 15398 in Lupus Part III High-Mass Star Formation (HMSF) 6 Two HMSFR Surveys Using APEX and NOEMA 7 Sagittarius B2 8 G29.96 -0.02 in W43 9 Orion BN/KL Part IV Ionisation 10 Two HII Surveys Using JVLA and ALMA 11 G24.78+0.08 in Scutum 12 G34.26+0.15 in Aquila Part V Photodissociation **13 ATLASGAL PDRs** 14 The Orion Bar in M42 15 The Horsehead Nebula in Orion Part VI - External Galaxies 16 Extragalactic Surveys: CANON and PHANGS-ALMA 17 ST16 and N113 in the Large Magellanic Cloud 18 Starburst Galaxy NGC 253

Computational Statistical Physics Lucas Böttcher and Hans J. Herrmann

COMPUTATIONAL STATISTICAL PHYSICS

LUCAS BÖTTCHER HANS J. HERRMANN

Contents

Part I Stochastic Methods

- 1 Random Numbers
- 2 Random-Geometrical Models
- **3 Equilibrium Systems**
- 4 Monte Carlo Methods
- 5 Phase Transitions
- 6 Cluster Algorithms
- 7 Histogram Methods
- 8 Renormalization Group
- 9 Learning and Optimizing
- **10 Parallelization**
- 11 Nonequilibrium Systems
- Part II Molecular Dynamics
- **12 Basic Molecular Dynamics**
- **13 Optimizing Molecular Dynamics**
- **14 Dynamics of Composed Particles**
- **15 Long-Range Potentials**
- **16 Canonical Ensemble**
- **17** Inelastic Collisions in Molecular Dynamics
- **18 Event-Driven Molecular Dynamics**
- **19 Nonspherical Particles**
- **20 Contact Dynamics**
- **21 Discrete Fluid Models**
- 22 Ab Initio Simulations

Effective Field Theories Ulf-G Meißner,and Akaki Rusetsky

Contents

- **1** Basic Concepts
- **2** Nonrelativistic Effective Theories
- **3** Symmetries
- 4 Low-Energy Effective Field Theory of QCD
- **5** Effective Theories in a Finite Volume
- 6 Exercises

Appendix A Notations and Conventions

Elementary Particle Physics : The Standard Theory John Iliopoulos and Theodore N. Tomaras

Contents

- 1. Introduction
- 2. Quantisation of the Electromagnetic Field and Spontaneous Photon Emission
- 3. Elements of Classical Field Theory
- 4. Scattering in Classical and Quantum Physics
- 5. Elements of Group Theory
- 6. Particle Physics Phenomenology
- 7. Relativistic Wave Equations
- 8. Towards a Relativistic Quantum Mechanics
- 9. From Classical to Quantum Mechanics
- 10. From Classical to Quantum Fields: Free Fields
- 11. Interacting Fields
- 12. Scattering in Quantum Field Theory
- 13. Gauge Interactions
- 14. Spontaneously Broken Symmetries
- **15. The Principles of Renormalisation**
- 16. The Electromagnetic Interactions
- **17. Infrared Effects**
- **18. The Weak Interactions**
- **19. A Gauge Theory for the Weak and Electromagnetic** Interactions
- 20. Neutrino Physics
- 21. The Strong Interactions
- 22. The Standard Model and Experiment
- 23. Beyond the Standard Model

Elements of Phase Transitions and Critical Phenomena Hidetoshi Nishimori and Gerardo Ortiz

Contents

- 1 Phase transitions and critical phenomena
- 2 Mean-field theories
- 3 Renormalization group and scaling
- 4 Implementation of the renormalization group
- 5 Statistical field theory
- 6 Conformal field theory
- 7 Kosterlitz-Thouless transition
- 8 Random systems
- 9 Exact solutions and related topics
- 10 Duality
- 11 Numerical methods

Fundamentals of Astrophysical Fluid Dynamics : Hydrodynamics, Magnetohydrodynamics, and Radiation Hydrodynamics

Shoji Kato , Jun Fukue

Astronomy and Astrophysics Library

Shoji Kato - Jun Fukue

Fundamentals

of Astrophysical Fluid Dynamics

Hydrodynamics, Magnetohydrodynamics,

and Radiation Hydrodynamics

Contents

- 1 Introduction
- Part I Hydrodynamical Phenomena in Astrophysical Objects
- 2 Basic Equations for Hydrodynamics
- **3** Astrophysical Fluid Flows
- 4 Wave Phenomena in Astrophysical Objects
- 5 Convection and Related Topics
- 6 Dynamical Instability and Dynamical Excitation of Oscillations
- 7 Instabilities Due to Dissipative Processes I (Secular Instability)
- 8 Overstability Due to Dissipative Processes II: Excitation of Oscillations
- 9 General Relativistic Hydrodynamics
- Part II Magnetohydrodynamical Phenomena in Astrophysical Objects
- 10 Derivation of Magnetohydrodynamical Equations from Boltzmann Equation
- 11 MHD Equations and Basic Characteristics of Magnetic Fields
- **12 Astrophysical MHD Flows**
- 13 Waves and Shocks in Magnetohydrodynamical Fluids
- **14 Astrophysical Dynamo**
- **15 General Stability Theorem for MHD Systems**
- 16 Instabilities Related to Magnetic Fields
- 17 Important Non-Ideal MHD Processes
- **18 Relativistic Magnetohydrodynamics**
- Part III Astrophysical Radiation Hydrodynamics
- 19 Basic Concepts of Radiative Fluids
- 20 Basic Equations for Radiative Transfer
- **21 Basic Equations for Radiation Hydrodynamics**
- **22 Astrophysical RHD Flows**
- 23 Wave and Instability in Radiative Fluids
- 24 Relativistic Radiative Transfer
- **25 Relativistic Radiation Hydrodynamics**
- 26 General Relativistic Radiation Hydrodynamics

Groups and Symmetries : From Finite Groups to Lie Groups Yvette Kosmann-Schwarzbach

🖉 Springer

Contents

- **1 General Facts About Groups**
- **2** Representations of Finite Groups
- **3 Representations of Compact Groups**
- 4 Lie Groups and Lie Algebras
- 5 Lie Groups SU(2) and SO(3)
- 6 Representations of SU(2) and SO(3)
- 7 Spherical Harmonics
- 8 Representations of SU(3) and Quarks
- 9 Spin Groups and Spinors

Introduction to Engineering and Scientific Computing with Python David E. Clough, Steven C. Chapra

David E. Clough Steven C. Chapra

CRC Press

Contents

Chapter 1	Engineering and Scientific Calculations
Chapter 2	Computer-Based Calculations
Chapter 3	Python Basics
Chapter 4	Structured Programming with Python
Chapter 5	Graphics—Matplotlib
Chapter 6	Array and Matrix Operations
Chapter 7	Solving Single Algebraic Equations
Chapter 8	Solving Sets of Algebraic Equations
Chapter 9	Solving Differential Equations

Chapter 10 Working with Data

Love, Literature and the Quantum Atom: Niels Bohr's 1913 Trilogy Revisited Finn Aaserud and John L. Heilbron

Contents

PART 1 : NIELS BOHR'S PRIVATE SPHERE

Revealed through unpublished family correspondence Finn Aaserud

- 1.1 Introduction
- 1.2 Finding each other in Copenhagen
- 1.3 Niels in Cambridge
- **1.4 Niels in Manchester**
- 1.5 Beginning married life in Copenhagen
- 1.6 Conclusion
- PART 2. NASCENT SCIENCE

The scientific and psychological background to Bohr's Trilogy J.L. Heilbron

- 2.1 Necessary preliminaries
- **2.2 Some physics around 1900**
- 2.3 "Stupid electrons"
- **2.4** Indictment of classical physics
- 2.5 Odin the lawgiver
- 2.6 The Trilogy
- 2.7 Bolts from the blue
- PART 3. THE TRILOGY

On the Constitution of Atoms and Molecules Niels Bohr

- **3.1 Binding of Electrons by Positive Nuclei**
- **3.2 Systems Containing only a Single Nucleus**
- 3.3 Systems Containing Several Nuclei

Modeling and Simulation in Thermal and Fluids Engineering Krishnan Murugesan

Contents

Chapter 1 Introduction. Chapter 2 Conservation Equations. Chapter 3 Finite Difference and Finite Volume Methods. CHapter 4 Finite Element Method. Chapter 5 Modeling of Heat Transfer Problems. Chapter 6 Modeling of Flow Problems.

Chapter 7 Navier-Stokes Equations.

Noether Symmetries in Theories of Gravity : With Applications to Astrophysics and Cosmology Francesco Bajardi anad Salvatore Capozziello

Noether Symmetries in Theories of Gravity

With Applications to Astrophysics and Cosmology

FRANCESCO BAJARDI AND SALVATORE CAPOZZIELLO

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

Contents

Part I PRELIMINARIES

- 1 The Concept of Symmetry
- 2 The Two Noether Theorems
- **3** Applications of Noether's First Theorem to Fields and Particles
- 4 Theories of Gravity: An Overview
- 5 Toward Quantum Gravity
- Part II THE NOETHER SYMMETRY APPROACH
- 6 From the Noether Theorem to the Noether Symmetry Approach
- 7 The Extensions of GR, TEGR, and STEGR
- 8 Higher-Order Extensions with the Gauss–Bonnet Invariant
- 9 Extensions with Higher Derivatives of R and T
- **10 Scalar-Tensor Theories of Gravity**
- **11 Nonlocal Gravity**
- 12 Noether Symmetries in Bianchi Universes
- **13** The Noether Approach in Spherical Symmetry
- Part III APPLICATIONS
- 14 Applications to Solar System, Stars, and Our Galaxy
- **15 Applications to Galaxies**
- **16- Applications to Cosmology**
- **17 Applications to Quantum Cosmology**
- 18 Strings, Swampland, Renormalizability, and Viability

The Philosophy and Physics of Noether's Theorems : A Centenary Volume Edited by James Read and Nicholas J. Teh

Contents

Introduction

- **1** The Noether Theorems in Context
- 2 Felix Klein and Emmy Noether on Invariant Theory and Variational Principles
- 3 Moscow, Oxford, or Princeton: Emmy Noether's Move from Göttingen (1933)
- 4 Getting to the Bottom of Noether's Theorem
- 5 BV Quantisation in Perturbative Algebraic QFT: Fundamental Concepts and Perspectives
- 6 Divergence Invariant Variational Problems
- 7 Do Symmetries 'Explain' Conservation Laws? The Modern Converse Noether Theorem vs Pragmatism
- 8 Noether's First Theorem and the Energy-Momentum Tensor Ambiguity Problem
- 9 Noether's Theorems and Energy in General Relativity
- **10 Geometric Objects and Perspectivalism**
- 11 Substantive General Covariance and the Einstein–Klein Dispute: A Noetherian Approach
- 12 Noether Charges, Gauge-Invariance, and Non-Separability
- 13 Observability, Redundancy, and Modality for Dynamical Symmetry Transformations
- 14 The Gauge Argument: A Noether Reason

Radiation Chemistry : From basics to applications in material and life sciences Edited by: Mélanie Spotheim-Maurizot , Mehran Mostafavi ,Thierry Douki, and Jacqueline Belloni

Contents

Part I / Primary radiation-induced phenomena

Chapter 1 An overview of the radiation chemistry of liquids

Chapter 2 Tools for radiolysis studies

Chapter 3 The solvated electron : a singular chemical species

Chapter 4 Water radiolysis under extreme conditions. Application to the nuclear industry

Part II / Radiation chemistry mechanisms and applications

Chapter 5 Molecular formation in the interstellar medium

Chapter 6 Water remediation by the electron beam treatment

Chapter 7 Metal clusters and nanomaterials

Chapter 8 Water radiolysis in cement-based materials

Chapter 9 Obtaining high performance polymeric materials by irradiation

Chapter 10 Radiosterilization of drugs

Chapter 11 Food irradiation: wholesomeness and treatment control

III / Radiation damage to biomolecules, radioprotection and radiotherapy

Chapter 12 Radiation-induced damage to DNA : from model compounds to cell

Chapter 13 Mechanisms of direct radiation damage to DNA

Chapter 14 Charge motion in DNA

Chapter 15 Genome maintenance mechanisms in response to radiation-induced DNA

Chapter 16 Pulse radiolysis studies of free radical processes in peptides and proteins

Chapter 17 Radiation-induced damage of membrane lipids and lipoproteins

Chapter 18 Predicting radiation damage distribution in biomolecules

Chapter 19 Chemical protection against ionizing radiation

Chapter 20 Advances in radiotherapy : new principles

Contents

- Chapter 1 Application of Radiation Technologies for Quality Improvement of LEDs Based upon AlGaAs
- Chaoter 2 Applicability of Quantum Dots in Biomedical Science
- Chapter 3 Hydrogen Gas Detection by Mini-Raman Lidar
- Chapter 4 Investigating the Nature of Insulator-Metal Transition in Neutron-Transmutation-Doped Ge:Ga
- Chapter 5 Radiation-Induced Degradation of Organic Compounds and Radiation Technologies for Purification of Aqueous Systems
- Chapter 6 Ionizing Radiation-Induced Polymerization
- Chapter 7 Interaction with Matter of Ionizing Radiation and Radiation Damages (Radicals)
- Chapter 8 Recent Developments in Count Rate Processing Associated with Radiation Monitoring Systems

Contents

- **1** General Introduction
- Part I Fundamentals of Turbulence
- 2 Eddy Turbulence in Hydrodynamics
- **3** Spectral Theory in Hydrodynamics
- Exercises I
- Part II Wave Turbulence
- 4 Introduction
- 5 Theory for Capillary Wave Turbulence
- 6 Inertial Wave Turbulence
- 7 Alfvén Wave Turbulence
- 8 Wave Turbulence in a Compressible Plasma
- 9 Gravitational Wave Turbulence

Exercises II

Appendix A Solutions to the Exercises Appendix B Formulary